中石油披露!未来10年内最强10项勘探开发技术!
大数据、云计算、物联网等信息技术与地质勘探融合发展,不断提升地质勘探的数字化水平,“地质云”平台的建立就是发展进程中的一个重要里程碑。借助“地质云”平台,可实现地质调查信息高效共享和精图1 地质勘探数字化、智能化发展历程准服务、地质调查管理业务一体化和协同化、国内外地学科研信息交流与多方协同。展望未来,人工智能与地质研究的深度融合,将催生出智慧地质,实现由地质大数据向智慧地质的升级。智慧地质涉及地球各圈层,包括地球形成与演化历史,地球物质组成及其变化,矿产资源形成、勘查与开发利用,人类环境的破坏、修复和保护等。智慧地质可为矿物勘查提供可视化线索,开创矿物学的全新方向。智慧地质在油气行业应用中,将有助于更高效地圈定最具潜力的区域、储层和井位,提高探井成功率,促进增储上产。多学科协作是油气行业发展大趋势,相关平台建设一直是大型油公司和油服公司的战略竞争制高点。随着大数据、云计算、物联网等信息技术的发展,国际油公司和油服公司相继推出多学科一体化协同平台(环境),如斯伦贝谢公司的DELFI 平台、贝克休斯GE 公司的Predix平台等。DELFI平台是一个基于云计算的协同平台,可实现多学科交互融合和勘探开发一体化,包括地质—油藏—工程一体化,从根本上改变勘探开发工作模式,从而提高工作效率,实现综合效益最大化。随着人工智能的快速发展,未来将打造“勘探开发一体化智能化协同平台”,通过提供信息共享、技术创新、生产经营一体化、智能化协同平台或环境,大幅度提升勘探开发数字化、网络化、智能化、一体化水平,促使复杂的计算过程(如建立模型、数值模拟、数据分析和预测等)、更加顺畅、智能、高效,加强信息共享、多学科协作,开启勘探开发一体化、智能化新篇章。数字油田经过20 多年的发展,油气田开发已初步实现了数字化、网络化、自动化,并开始向着智能化目标迈进。从最初的油田历史数据归档管理以及生产、管理、经验数据的实时采集及存储;到集成油田员工、油井、设备等信息,实现互通互联、统一管理;再到生产数据的自动采集、传输和储存,油井与设备的远程控制、自动优化,自动报警、自动关停;最终实现利用已有的大量知识及经验对油田进行智能化开发的目的。相应地,数字油田技术的应用范围也逐渐从井筒、油井扩展到油气藏、油气田,并将最终实现全资产覆盖。智能油田是数字油田未来的发展方向,将以一个统一的数据智能分析控制平台为中心,无论固定资产、移动设备还是工作人员,都将成为数据的收集者和接受者,并直接同控制中心建立联系。智能控制中心结合人工智能、大数据、云计算等技术,通过分析海量数据,在全资产范围内实时完成资源合理调配、生产优化运行、故障判断、风险预警等,最终实现全部油田资产的智能化开发运营。纳米技术与提高采收率技术(EOR)融合集成,可解决传统EOR 技术不能解决或难以解决的问题,如波及效率低、费用昂贵、苛刻环境适应性差及存在潜在储层伤害等。纳米智能驱油技术的研发思路是:纳米驱油剂的“尺寸足够小”,能够基本实现全油藏波及;“强憎水强亲油”,遇水排斥,遇油亲合,具有自驱动力,实现智能找油;“分散油聚并”,能够捕集分散油,形成油墙或富油带并被驱出。纳米智能驱油技术有望成为提高采收率的战略接替技术,预期将大幅度提高最终采收率,应用前景广阔。未来油田开发将以纳米材料为基础,以化学改性为手段,在同一纳米材料上集成多种功能,真正赋予纳米材料目标性与智能性,将“一剂多能”“一剂多用”变为现实。高含水是成熟油田面临的重大挑战之一,高含水油井开采过程中产液量高、含水率高,产液量与产油量成正比。为了增加产油量,一般采取大泵抽汲开采方式,该方式油水日处理量巨大,导致开采成本上升,而污水处理也会带来潜在的环境问题。井下油水分离技术将油水混合物在井下直接分离,石油、天然气和剩余水被开采出地面,地面产出液大幅降低,含水率大幅下降,可极大缓解地面处理站油水处理压力,降低潜在的环境风险,是实现高含水油田经济稳定开发的有效措施之一。目前该技术正朝着结构小型化、功能集约化、管理智能化的方向发展,未来将开辟“井下工厂”开发新模式。地下原位改质是通过对地下储层进行高温加热,将固体干酪根转换为轻质液态烃,再通过传统工艺将液态烃从地下开采出来的方法。该技术具有不受地质条件限制、地下转化轻质油、高采出程度、低污染等优点,一旦规模化应用,将对重质油、页岩油和油页岩开采具有革命性意义。壳牌公司地下原位改质技术采用小间距井下电加热器,循序均匀地将地层加热到转化温度。该技术通过缓慢加热提升产出油气的质量,相对于其他工艺可以回收埋藏极深的岩层中的页岩油,同时省去地下燃烧过程,减少地表污染,降低对环境的危害。为了避免地下水污染,壳牌公司开发了独有的冷冻墙技术,可有效避免生产区域在页岩加热、油气采出和后期清理过程中地下水的侵入。对于一个商业开采项目,根据加热器间距和加热速度,将地层加热到转化温度的时间估计需要2 ~4年。试验结果显示,电加热原位改质工艺所生产油气的能量值是所消耗能量的3倍。近年来,水平井分段压裂呈现压裂段数越来越多、支撑剂和压裂液用量越来越大的趋势。从长远看,实现压裂段数少、精、准,才是水力压裂技术的理想目标。目前业界正在探索大数据、人工智能指导下的高精准压裂技术和布缝优化技术,但是真正能够“闻着气味”走的压裂技术还有待研究和突破。美国Quantico能源公司利用人工智能技术,将静态模型与地球物理解释紧密耦合,对不良数据进行质量控制,形成高精度预测模型,用于压裂设计,在二叠盆地和巴肯油田的100多口油井中使用后,与邻井对比结果表明,优化后的完井方案不仅可以使产量提高10%~40%,还能有效降低整体压裂作业成本。随着“甜点”识别、压裂监测技术和人工智能技术的发展,未来的高精准智能压裂技术有望实现每一级压裂都压在油气“甜点”上,可有效提高储层钻遇率和油气产量,降低开发成本,降本增效意义重大。
为应对风、浪、流等恶劣海洋环境对海上油气生产的影响,海上油气生产尤其是深水油气生产日益海底化。海底生产系统已得到规模应用,并呈现以下发展特点。
(1)功能及处理能力不断增加:主要包括水下分离、水下举升、水下多相流计量、水下干湿气压缩、产出水回注等。
(2)适应水深不断增加:海底采油树的最大安装水深纪录已达2934m。
(3)自动化水平不断提升。为进一步提升海底生产系统的自动化水平,国外已有公司在深水油气开发中应用了全电动海底生产系统,进一步削减深水油气开发支出,预示海底生产系统将迎来全电动化时代。
随着技术的不断进步,未来将发展海底生产系统的升级版——海底工厂。集油气水三相分离技术、水下增压技术、处理后的原油存储海底、产出水处理后进行回注于一体的海底油气生产及处理厂,可大幅减少海面油气生产设施投入,甚至最终可实现全海底化生产。
人工智能快速发展,海底生产系统和海底工厂也将向着智能化方向发展,催生智能化海底生产系统和智能化海底工厂。
当前主流的浮式生产装置包括浮式生产储油卸油装置(FPSO)、半潜式平台(Semi)、张力腿平台(TLP)和Spar(深吃水立柱式平台)四大类。其中,FPSO应用最为广泛,2018年全球大约有180艘FPSO在役。经过数十年的发展,FPSO 相关技术已经成熟,并持续升级换代,TLP 平台已发展到第3代,Spar 平台已发展到第4代。这些浮式生产装置适合的油气生产模式是:海底生产系统+ 浮式生产装置+ 油气管道(或穿梭油轮)。
在缺乏海底管道设施的海域,国外正大力发展浮式LNG装置(FLNG)。该装置集天然气生产、处理、液化、储存、卸载功能于一体,开创了全新的海上天然气开采方式。目前全球已有两艘浮式LNG装置投入使用,其中一艘FLNG装置位于马来西亚沙捞越海上;另一艘位于澳大利亚Browse盆地,离200km,实际作业水深250m,长度为488m,宽度为74m,年生产能力为LNG360 ×10^4t、LPG40×10^4t,储存能力为43.75×10^4m³。伴随越来越多的FLNG 装置投入运营,将推动海上边际气田、远海气田和深水气田的高效开发。
全球海域天然气水合物资源量巨大,经过长期的技术研发,中国、日本等国已成功试采,未来10 年将有越来越多的国家进行试采。中国、美国、日本、印度、加拿大、德国、法国、英国等30多个国家都在大力开展技术攻关,以期早日实现天然气水合物的商业开采。目前商业开采海域天然气水合物面临的最大挑战一是成本问题,二是安全环保问题。为解决这些问题,需要应用一系列颠覆性技术装备。浅表层天然气水合物将主要应用铰吸法进行开采,埋藏较深的天然气水合物将应用钻井法进行开采。
天然气水合物开采井在海底以下深度不会超过1000m,如应用大型浮式钻井装置(钻井船或半潜式钻井平台)及大型钻机,实属大材小用,极不经济。因此,为了降低钻井成本,必须应用成套的安全高效低成本技术装备,如定制中小型浮式平台、中小型海底防喷器、复合连续管钻机、连续管钻井、复合材料隔水管等,甚至实施无隔水管钻井。当天然气水合物实现商业开采,将开启一个崭新的时代——天然气水合物时代,届时天然气水合物将成为重要的接替资源。
此外,ECF力荐目前长城钻探正在使用的,作为应用于页岩油气、煤层气、致密砂岩气、凝析油气、CCUS等领域的井下工具:点击下方图片链接跳转原文
版权声明:稿件为ECF国际页岩气论坛(www.energychinaforum.com)负责编译,未经许可不可转载,否则将追究法律责任